Investigating the Role of Various Environment and Process Conditions in Wastewater Sludge Odor Generation
نویسنده
چکیده
Dewatered sludges and biosolids generated from wastewater treatment facilities are known to emit malodorous odors causing public inconvenience. The odors typically comprise of reduced organo sulfur based compounds and nitrogen containing compounds. Lime stabilization is a technique which is commonly used in the wastewater industry to produce biosolids having reduced odors that can be safely land disposed. In this research, odors produced from dewatered sludges and lime stabilized biosolids were investigated. Lime dosing and incorporation in sludge play an important role in generation of reduced sulfur and trimethylamine (TMA) odor compounds. Results revealed that poor lime dosing can lead to an increase in odors due to biological generation of volatile sulfur compounds (VSCs) during storage. In this study, a belt filter press gave a higher production of sulfur and TMA odors compared to a vacuum filter for the same sludge, which is attributed to the shear imparted to sludge during the dewatering process. Preliming studies suggested incomplete mixing of lime with sludge led to biological activity. The achievement of the correct pH and its maintenance during storage is considered critical for effective odor management from lime stabilized biosolids. A positive linear relation was obtained between sulfur based odor production and labile protein content in sludge. Furthermore, as the Al/Fe ratio increased, the labile proteins was observed to decrease. Trivalent metals are found to play an important role in binding of labile proteins thus effecting odor potential contained in sludge/biosolids. This was found true for most sludge irrespective of their liming status and independent of upstream process conditions. Further work in this area is needed to be able to provide a better understanding of odor production to aid in development of odor control techniques.
منابع مشابه
Tetracycline Removal from Wastewater and Electricity Generation in Microbial Electro-Fenton System in Different Electrical Circuit Conditions
Background and purpose: Microbial electro-Fenton system as a novel technology can be employed in removal of resistant organic pollutants along with generation of renewable electrical energy through the activity of anaerobic microorganisms. This study aimed at investigating the performance of this process in treatment of synthetic wastewater containing tetracycline and generation of electricity ...
متن کاملPrevalence of antibiotic resistant genes in selected activated sludge processes in Isfahan Province, Iran
Wastewater treatment plants are one of the main sources of dissemination of antibiotic resistance genes (ARGs) into the environment. The present study was conducted to determine the prevalence and removal of ARGs in different wastewater treatment processes. A total of 36 samples from raw and final effluent of different activated sludge processes were collected and analyzed. Molecular analysis w...
متن کاملOptimization of the combined integrated fixed film activated sludge and photocatalytic process via iron oxide-titanium dioxide nanocomposite in treating pharmaceutical wastewater
Background and Objective: Pharmaceutical wastewater has a high level of pollution load that should be treated before discharging to the environment. Integrated processes using different mechanisms are one of the most fruitful methods in wastewater treatment. In this study, combined Integrated Fixed Film Activated Sludge (IFAS) and photocatalytic processes are utilized using of Fe3O4/TiO2 nanoca...
متن کاملTreatment of dairy wastewater by graphene oxide nanoadsorbent and sludge separation, using In Situ Sludge Magnetic Impregnation (ISSMI)
The present research investigates the ability of graphene oxide nanosheets for treatment of dairy wastewater, using In Situ Sludge Magnetic Impregnation” (ISSMI) to separate sludge after adsorption process. To increase the interaction between magnetic nanoparticles and graphene oxide, the former has been functionalized, using 3-Aminopropyl triethoxysilane, with the synthesized graphene oxide an...
متن کاملProcess Performance of a Granular Single Bioreactor with Continuous Feeding and Intermittent Discharge Regime Treating Dairy Wastewater
In this study, granulated sludge synthesized in a sequence batch reactor (SBR) and then granulated sludge was transferred to continuous feeding and intermittent discharge (CFID) bioreactor. Two independent variables (air flow rate and hydraulic retention time (HRT)) were considered to optimize the process. Subsequently, long term performance (150 days) of the bioreactor was assessed by monitori...
متن کامل